2022-12-28 23:52:42 -07:00

364 lines
17 KiB
C#

using ShellProgressBar;
using System.Text.Json;
using View_by_Distance.Distance.Models.Stateless;
using View_by_Distance.FaceRecognitionDotNet;
using View_by_Distance.Shared.Models;
namespace View_by_Distance.Distance.Models;
public partial class E_Distance
{
private readonly List<string> _Moved;
private readonly List<double?> _Debug;
private readonly List<string> _Renamed;
private readonly Serilog.ILogger? _Log;
private readonly int _FaceConfidencePercent;
private readonly bool _DistanceRenameToMatch;
private readonly double[] _RangeFaceConfidence;
private readonly bool _DistanceMoveUnableToMatch;
private readonly List<string> _AllMappedFaceFiles;
private readonly double[] _RangeDistanceTolerance;
private readonly List<string> _AllMappedFaceFileNames;
private readonly List<string> _DuplicateMappedFaceFiles;
public E_Distance(bool distanceMoveUnableToMatch, bool distanceRenameToMatch, int faceConfidencePercent, double[] rangeDistanceTolerance, double[] rangeFaceConfidence)
{
_Debug = new();
_Moved = new();
_Renamed = new();
_AllMappedFaceFiles = new();
_AllMappedFaceFileNames = new();
_DuplicateMappedFaceFiles = new();
_RangeFaceConfidence = rangeFaceConfidence;
_Log = Serilog.Log.ForContext<E_Distance>();
_DistanceRenameToMatch = distanceRenameToMatch;
_FaceConfidencePercent = faceConfidencePercent;
_RangeDistanceTolerance = rangeDistanceTolerance;
_DistanceMoveUnableToMatch = distanceMoveUnableToMatch;
}
private static void MoveUnableToMatch(string file)
{
string checkFile = string.Concat(file, ".unk");
if (File.Exists(file) && !File.Exists(checkFile))
File.Move(file, checkFile);
}
private FaceDistanceContainer[] GetFaceDistanceContainers(MappingFromItem mappingFromItem, List<Face> intersectFaces)
{
FaceDistanceContainer[] results;
int confidencePercent;
int normalizedRectangle;
FaceDistance faceDistance;
FaceDistanceContainer faceDistanceContainer;
List<FaceDistanceContainer> collection = new();
foreach (Face face in intersectFaces)
{
if (face.FaceEncoding is null || face.Location is null || face.OutputResolution is null)
throw new NotSupportedException();
confidencePercent = Shared.Models.Stateless.Methods.ILocation.GetConfidencePercent(_FaceConfidencePercent, _RangeFaceConfidence, face.Location.Confidence);
normalizedRectangle = Shared.Models.Stateless.Methods.ILocation.GetNormalizedRectangle(face.Location, Shared.Models.Stateless.ILocation.Digits, face.OutputResolution);
if (face.FaceDistance?.Encoding is not null && face.FaceDistance.Encoding is FaceRecognitionDotNet.FaceEncoding faceEncoding)
faceDistance = new(confidencePercent, faceEncoding, mappingFromItem.Id, mappingFromItem.IsWrongYear, mappingFromItem.MinimumDateTime, normalizedRectangle);
else
{
faceEncoding = FaceRecognition.LoadFaceEncoding(face.FaceEncoding.RawEncoding);
faceDistance = new(confidencePercent, faceEncoding, mappingFromItem.Id, mappingFromItem.IsWrongYear, mappingFromItem.MinimumDateTime, normalizedRectangle);
lock (intersectFaces)
face.SetFaceDistance(faceDistance);
}
faceDistanceContainer = new(face, faceDistance);
collection.Add(faceDistanceContainer);
}
results = collection.ToArray();
return results;
}
private static List<FaceDistance> GetFaceDistanceEncodings(FaceDistanceContainer[] faceDistanceContainers)
{
List<FaceDistance> faceDistanceEncodings = new();
foreach (FaceDistanceContainer faceDistanceContainer in faceDistanceContainers)
{
if (faceDistanceContainer.FaceDistance.Encoding is null)
continue;
faceDistanceEncodings.Add(faceDistanceContainer.FaceDistance);
}
return faceDistanceEncodings;
}
private List<(Face Face, double? Length)> GetValues(MappingFromItem mappingFromItem, List<Face> intersectFaces, Shared.Models.FaceEncoding modelsFaceEncoding)
{
List<(Face Face, double? Length)> results = new();
Face face;
FaceDistance faceDistanceLength;
FaceRecognitionDotNet.FaceEncoding faceRecognitionDotNetFaceEncoding = FaceRecognition.LoadFaceEncoding(modelsFaceEncoding.RawEncoding);
FaceDistance faceDistanceEncoding = new(faceRecognitionDotNetFaceEncoding);
FaceDistanceContainer[] faceDistanceContainers = GetFaceDistanceContainers(mappingFromItem, intersectFaces);
int faceDistanceContainersLength = faceDistanceContainers.Length;
if (faceDistanceContainersLength != intersectFaces.Count)
throw new NotSupportedException();
List<FaceDistance> faceDistanceEncodings = GetFaceDistanceEncodings(faceDistanceContainers);
if (faceDistanceEncodings.Count != intersectFaces.Count)
throw new NotSupportedException();
List<FaceDistance> faceDistanceLengths = FaceRecognition.FaceDistances(faceDistanceEncodings, faceDistanceEncoding);
if (faceDistanceLengths.Count != faceDistanceContainersLength)
throw new NotSupportedException();
for (int i = 0; i < intersectFaces.Count; i++)
{
face = intersectFaces[i];
faceDistanceLength = faceDistanceLengths[i];
if (faceDistanceLength.Length is null)
throw new NotSupportedException();
results.Add(new(face, faceDistanceLength.Length.Value));
}
return results;
}
private (Face, double?)[] GetClosestFaceByDistanceIgnoringTolerance(MappingFromItem mappingFromItem, List<Face> intersectFaces, Shared.Models.FaceEncoding modelsFaceEncoding)
{
(Face, double?)[] results;
List<(Face Face, double? Length)> collection = GetValues(mappingFromItem, intersectFaces, modelsFaceEncoding);
results = (from l in collection orderby l.Length select l).Take(1).ToArray();
if (results.Any())
{
(Face _, double? length) = results.First();
_Debug.Add(length);
}
return results;
}
private static List<(Face, double?)> GetMatchingFacesByFaceEncoding(Face[] filteredFaces, string? json)
{
List<(Face, double?)> results = new();
string check;
foreach (Face face in filteredFaces)
{
if (json is null || face.FaceEncoding is null)
continue;
if (!json.Contains(face.FaceEncoding.RawEncoding[0].ToString()))
continue;
check = JsonSerializer.Serialize(face.FaceEncoding);
if (check != json)
continue;
results.Add(new(face, 0));
}
return results;
}
private static FileInfo? CheckFileThenGetFileInfo(string facesFileNameExtension, MappingFromItem mappingFromItem, string file, List<(Face, double?)> checkFaces)
{
FileInfo? result = null;
string checkFile;
string? mappedFaceDirectory;
string deterministicHashCodeKey;
foreach ((Face face, _) in checkFaces)
{
if (checkFaces.Count != 1)
break;
if (face.FaceEncoding is null || face.Location is null || face.OutputResolution is null)
throw new NotSupportedException();
mappedFaceDirectory = Path.GetDirectoryName(file);
if (mappedFaceDirectory is null)
throw new NotSupportedException();
deterministicHashCodeKey = Shared.Models.Stateless.Methods.IMapping.GetDeterministicHashCodeKey(mappingFromItem.Id, face.Location, Shared.Models.Stateless.ILocation.Digits, face.OutputResolution);
checkFile = Path.Combine(mappedFaceDirectory, $"{deterministicHashCodeKey}{mappingFromItem.ImageFileHolder.ExtensionLowered}{facesFileNameExtension}");
if (checkFile == file)
continue;
result = new FileInfo(checkFile);
}
return result;
}
private void AppendMatchingDuplicates(string file, string[] matches)
{
string checkFile;
FileInfo fileInfo = new(file);
List<(long Length, string FullName)> collection = new();
if (fileInfo.Exists)
collection.Add(new(fileInfo.Length, fileInfo.FullName));
lock (_DuplicateMappedFaceFiles)
_DuplicateMappedFaceFiles.Add(file);
foreach (string match in matches)
{
fileInfo = new(match);
if (!fileInfo.Exists)
continue;
collection.Add(new(fileInfo.Length, fileInfo.FullName));
break;
}
collection = collection.OrderBy(l => l.Length).ToList();
for (int i = 0; i < collection.Count - 1; i++)
{
checkFile = string.Concat(collection[i].FullName, ".dup");
if (File.Exists(checkFile))
continue;
File.Move(collection[i].FullName, checkFile);
}
}
public void LookForMatchFacesAndPossiblyRename(string facesFileNameExtension, string eDistanceContentDirectory, MappingFromItem mappingFromItem, List<Face> faces, List<LocationContainer<MetadataExtractor.Directory>> collection)
{
string? json;
string fileName;
string[] matches;
FileInfo? fileInfo;
List<Face> intersectFaces;
List<(Face, double?)> checkFaces = new();
Shared.Models.FaceEncoding? modelsFaceEncoding;
Face[] filteredFaces = (from l in faces where l.FaceEncoding is not null && l.Location is not null && l.OutputResolution is not null select l).ToArray();
if (filteredFaces.Length != faces.Count)
checkFaces.Clear();
foreach (LocationContainer<MetadataExtractor.Directory>? locationContainer in collection)
{
if (_Renamed.Contains(locationContainer.File))
continue;
fileName = Path.GetFileName(locationContainer.File);
if (locationContainer.FromDistanceContent && _DuplicateMappedFaceFiles.Contains(fileName))
continue;
checkFaces.Clear();
if (!locationContainer.Directories.Any())
{
if (locationContainer.FromDistanceContent)
throw new NullReferenceException(nameof(locationContainer.Directories));
continue;
}
json = Metadata.Models.Stateless.IMetadata.GetFaceEncoding(locationContainer.Directories);
if (json is null)
{
if (_DistanceMoveUnableToMatch)
MoveUnableToMatch(locationContainer.File);
continue;
}
if (filteredFaces.Any())
checkFaces.AddRange(GetMatchingFacesByFaceEncoding(filteredFaces, json));
if (checkFaces.Count == 1)
_Debug.Add(0);
if (checkFaces.Count != 1 && !string.IsNullOrEmpty(json))
{
checkFaces.Clear();
modelsFaceEncoding = JsonSerializer.Deserialize<Shared.Models.FaceEncoding>(json);
if (modelsFaceEncoding is null)
throw new NotSupportedException();
if (filteredFaces.Any())
{
intersectFaces = Shared.Models.Stateless.Methods.ILocation.FilterByIntersect(filteredFaces, locationContainer.NormalizedRectangle);
if (intersectFaces.Any())
checkFaces.AddRange(GetClosestFaceByDistanceIgnoringTolerance(mappingFromItem, intersectFaces, modelsFaceEncoding));
}
}
if (!checkFaces.Any())
{
if (_DistanceMoveUnableToMatch)
MoveUnableToMatch(locationContainer.File);
continue;
}
if (checkFaces.Count != 1)
{
if (_DistanceMoveUnableToMatch)
MoveUnableToMatch(locationContainer.File);
continue;
}
fileInfo = CheckFileThenGetFileInfo(facesFileNameExtension, mappingFromItem, locationContainer.File, checkFaces);
if (fileInfo is not null)
{
if (_DistanceRenameToMatch && fileInfo is not null)
{
if (fileInfo.Exists)
File.Delete(locationContainer.File);
else
File.Move(locationContainer.File, fileInfo.FullName);
_Renamed.Add(locationContainer.File);
}
continue;
}
if (_AllMappedFaceFileNames.Contains(fileName))
{
lock (_AllMappedFaceFiles)
matches = (from l in _AllMappedFaceFiles where l != locationContainer.File && Path.GetFileName(l) == fileName select l).ToArray();
if (locationContainer.FromDistanceContent && matches.Any())
AppendMatchingDuplicates(locationContainer.File, matches);
}
if (!locationContainer.FromDistanceContent)
continue;
lock (_AllMappedFaceFiles)
_AllMappedFaceFiles.Add(locationContainer.File);
lock (_AllMappedFaceFileNames)
_AllMappedFaceFileNames.Add(fileName);
}
}
public void Clear()
{
if (_Log is null)
throw new NullReferenceException(nameof(_Log));
double?[] debug = (from l in _Debug where l is null or not 0 select l).ToArray();
if (debug.Any())
{
string debugMessage = $"{_Debug.Count - debug.Length} - {debug.Min()} - {_Debug.Max()}";
_Log.Info(debugMessage);
}
if (_Moved.Any() || _Renamed.Any() || _DuplicateMappedFaceFiles.Any())
throw new NotImplementedException("Restart!");
_Debug.Clear();
_Moved.Clear();
_Renamed.Clear();
_AllMappedFaceFiles.Clear();
_AllMappedFaceFileNames.Clear();
_DuplicateMappedFaceFiles.Clear();
}
public List<FaceDistanceContainer> GetMissingFaceDistanceContainer(int maxDegreeOfParallelism, long ticks, string dFacesCollectionDirectory, Dictionary<int, Dictionary<int, PersonContainer[]>> missingIdThenNormalizedRectangleToPersonContainers)
{
List<FaceDistanceContainer> results = new();
string[] files;
List<Face>? faces;
int confidencePercent;
int normalizedRectangle;
bool? isWrongYear = null;
FaceDistance faceDistance;
List<(int id, string json)> collection = new();
FaceDistanceContainer faceDistanceContainer;
foreach (KeyValuePair<int, Dictionary<int, PersonContainer[]>> keyValuePair in missingIdThenNormalizedRectangleToPersonContainers)
{
files = Directory.GetFiles(dFacesCollectionDirectory, $"{keyValuePair.Key}*.json", SearchOption.TopDirectoryOnly);
if (files.Length != 1)
continue;
collection.Add(new(keyValuePair.Key, Shared.Models.Stateless.Methods.IFace.GetJson(files[0])));
}
int totalSeconds = (int)Math.Floor(new TimeSpan(DateTime.Now.Ticks - ticks).TotalSeconds);
ParallelOptions parallelOptions = new() { MaxDegreeOfParallelism = maxDegreeOfParallelism };
string message = $") {collection.Count:000} Setting missing distance containers - {totalSeconds} total second(s)";
ProgressBarOptions options = new() { ProgressCharacter = '─', ProgressBarOnBottom = true, DisableBottomPercentage = true };
using ProgressBar progressBar = new(collection.Count, message, options);
_ = Parallel.For(0, collection.Count, parallelOptions, (i, state) =>
{
progressBar.Tick();
int id = collection[i].id;
string json = collection[i].json;
faces = JsonSerializer.Deserialize<List<Face>>(json);
if (faces is null)
throw new NullReferenceException(nameof(faces));
foreach (Face face in faces)
{
if (face.FaceEncoding is null || face.Location is null || face.OutputResolution is null)
continue;
confidencePercent = Shared.Models.Stateless.Methods.ILocation.GetConfidencePercent(_FaceConfidencePercent, _RangeFaceConfidence, face.Location.Confidence);
normalizedRectangle = Shared.Models.Stateless.Methods.ILocation.GetNormalizedRectangle(face.Location, Shared.Models.Stateless.ILocation.Digits, face.OutputResolution);
if (face.FaceDistance?.Encoding is not null && face.FaceDistance.Encoding is FaceRecognitionDotNet.FaceEncoding faceEncoding)
faceDistance = new(confidencePercent, faceEncoding, id, isWrongYear, face.DateTime, normalizedRectangle);
else
{
faceEncoding = FaceRecognition.LoadFaceEncoding(face.FaceEncoding.RawEncoding);
faceDistance = new(confidencePercent, faceEncoding, id, isWrongYear, face.DateTime, normalizedRectangle);
face.SetFaceDistance(faceDistance);
}
faceDistanceContainer = new(face, faceDistance);
lock (results)
results.Add(faceDistanceContainer);
}
});
return results;
}
}