333 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| compile insert RTI_PAJ_SHA1
 | |
| /*
 | |
|  * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
 | |
|  * in FIPS 180-1
 | |
|  * Version 2.2 Copyright Paul Johnston 2000 - 2009.
 | |
|  * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
 | |
|  * Distributed under the BSD License
 | |
|  * See http://pajhome.org.uk/crypt/md5 for details.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Configurable variables. You may need to tweak these to be compatible with
 | |
|  * the server-side, but the defaults work in most cases.
 | |
|  */
 | |
| var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */
 | |
| var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */
 | |
| 
 | |
| /*
 | |
|  * These are the functions you'll usually want to call
 | |
|  * They take string arguments and return either hex or base-64 encoded strings
 | |
|  */
 | |
| function hex_sha1(s)    { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
 | |
| function b64_sha1(s)    { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
 | |
| function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
 | |
| function hex_hmac_sha1(k, d)
 | |
|   { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
 | |
| function b64_hmac_sha1(k, d)
 | |
|   { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
 | |
| function any_hmac_sha1(k, d, e)
 | |
|   { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
 | |
| 
 | |
| /*
 | |
|  * Perform a simple self-test to see if the VM is working
 | |
|  */
 | |
| function sha1_vm_test()
 | |
| {
 | |
|   return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the SHA1 of a raw string
 | |
|  */
 | |
| function rstr_sha1(s)
 | |
| {
 | |
|   return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the HMAC-SHA1 of a key and some data (raw strings)
 | |
|  */
 | |
| function rstr_hmac_sha1(key, data)
 | |
| {
 | |
|   var bkey = rstr2binb(key);
 | |
|   if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
 | |
| 
 | |
|   var ipad = Array(16), opad = Array(16);
 | |
|   for(var i = 0; i < 16; i++)
 | |
|   {
 | |
|     ipad[i] = bkey[i] ^ 0x36363636;
 | |
|     opad[i] = bkey[i] ^ 0x5C5C5C5C;
 | |
|   }
 | |
| 
 | |
|   var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
 | |
|   return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a raw string to a hex string
 | |
|  */
 | |
| function rstr2hex(input)
 | |
| {
 | |
|   try { hexcase } catch(e) { hexcase=0; }
 | |
|   var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
 | |
|   var output = "";
 | |
|   var x;
 | |
|   for(var i = 0; i < input.length; i++)
 | |
|   {
 | |
|     x = input.charCodeAt(i);
 | |
|     output += hex_tab.charAt((x >>> 4) & 0x0F)
 | |
|            +  hex_tab.charAt( x        & 0x0F);
 | |
|   }
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a raw string to a base-64 string
 | |
|  */
 | |
| function rstr2b64(input)
 | |
| {
 | |
|   try { b64pad } catch(e) { b64pad=''; }
 | |
|   var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 | |
|   var output = "";
 | |
|   var len = input.length;
 | |
|   for(var i = 0; i < len; i += 3)
 | |
|   {
 | |
|     var triplet = (input.charCodeAt(i) << 16)
 | |
|                 | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
 | |
|                 | (i + 2 < len ? input.charCodeAt(i+2)      : 0);
 | |
|     for(var j = 0; j < 4; j++)
 | |
|     {
 | |
|       if(i * 8 + j * 6 > input.length * 8) output += b64pad;
 | |
|       else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
 | |
|     }
 | |
|   }
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a raw string to an arbitrary string encoding
 | |
|  */
 | |
| function rstr2any(input, encoding)
 | |
| {
 | |
|   var divisor = encoding.length;
 | |
|   var remainders = Array();
 | |
|   var i, q, x, quotient;
 | |
| 
 | |
|   /* Convert to an array of 16-bit big-endian values, forming the dividend */
 | |
|   var dividend = Array(Math.ceil(input.length / 2));
 | |
|   for(i = 0; i < dividend.length; i++)
 | |
|   {
 | |
|     dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * Repeatedly perform a long division. The binary array forms the dividend,
 | |
|    * the length of the encoding is the divisor. Once computed, the quotient
 | |
|    * forms the dividend for the next step. We stop when the dividend is zero.
 | |
|    * All remainders are stored for later use.
 | |
|    */
 | |
|   while(dividend.length > 0)
 | |
|   {
 | |
|     quotient = Array();
 | |
|     x = 0;
 | |
|     for(i = 0; i < dividend.length; i++)
 | |
|     {
 | |
|       x = (x << 16) + dividend[i];
 | |
|       q = Math.floor(x / divisor);
 | |
|       x -= q * divisor;
 | |
|       if(quotient.length > 0 || q > 0)
 | |
|         quotient[quotient.length] = q;
 | |
|     }
 | |
|     remainders[remainders.length] = x;
 | |
|     dividend = quotient;
 | |
|   }
 | |
| 
 | |
|   /* Convert the remainders to the output string */
 | |
|   var output = "";
 | |
|   for(i = remainders.length - 1; i >= 0; i--)
 | |
|     output += encoding.charAt(remainders[i]);
 | |
| 
 | |
|   /* Append leading zero equivalents */
 | |
|   var full_length = Math.ceil(input.length * 8 /
 | |
|                                     (Math.log(encoding.length) / Math.log(2)))
 | |
|   for(i = output.length; i < full_length; i++)
 | |
|     output = encoding[0] + output;
 | |
| 
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Encode a string as utf-8.
 | |
|  * For efficiency, this assumes the input is valid utf-16.
 | |
|  */
 | |
| function str2rstr_utf8(input)
 | |
| {
 | |
|   var output = "";
 | |
|   var i = -1;
 | |
|   var x, y;
 | |
| 
 | |
|   while(++i < input.length)
 | |
|   {
 | |
|     /* Decode utf-16 surrogate pairs */
 | |
|     x = input.charCodeAt(i);
 | |
|     y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
 | |
|     if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
 | |
|     {
 | |
|       x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
 | |
|       i++;
 | |
|     }
 | |
| 
 | |
|     /* Encode output as utf-8 */
 | |
|     if(x <= 0x7F)
 | |
|       output += String.fromCharCode(x);
 | |
|     else if(x <= 0x7FF)
 | |
|       output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
 | |
|                                     0x80 | ( x         & 0x3F));
 | |
|     else if(x <= 0xFFFF)
 | |
|       output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
 | |
|                                     0x80 | ((x >>> 6 ) & 0x3F),
 | |
|                                     0x80 | ( x         & 0x3F));
 | |
|     else if(x <= 0x1FFFFF)
 | |
|       output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
 | |
|                                     0x80 | ((x >>> 12) & 0x3F),
 | |
|                                     0x80 | ((x >>> 6 ) & 0x3F),
 | |
|                                     0x80 | ( x         & 0x3F));
 | |
|   }
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Encode a string as utf-16
 | |
|  */
 | |
| function str2rstr_utf16le(input)
 | |
| {
 | |
|   var output = "";
 | |
|   for(var i = 0; i < input.length; i++)
 | |
|     output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,
 | |
|                                   (input.charCodeAt(i) >>> 8) & 0xFF);
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| function str2rstr_utf16be(input)
 | |
| {
 | |
|   var output = "";
 | |
|   for(var i = 0; i < input.length; i++)
 | |
|     output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
 | |
|                                    input.charCodeAt(i)        & 0xFF);
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert a raw string to an array of big-endian words
 | |
|  * Characters >255 have their high-byte silently ignored.
 | |
|  */
 | |
| function rstr2binb(input)
 | |
| {
 | |
|   var output = Array(input.length >> 2);
 | |
|   for(var i = 0; i < output.length; i++)
 | |
|     output[i] = 0;
 | |
|   for(var i = 0; i < input.length * 8; i += 8)
 | |
|     output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert an array of big-endian words to a string
 | |
|  */
 | |
| function binb2rstr(input)
 | |
| {
 | |
|   var output = "";
 | |
|   for(var i = 0; i < input.length * 32; i += 8)
 | |
|     output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
 | |
|   return output;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the SHA-1 of an array of big-endian words, and a bit length
 | |
|  */
 | |
| function binb_sha1(x, len)
 | |
| {
 | |
|   /* append padding */
 | |
|   x[len >> 5] |= 0x80 << (24 - len % 32);
 | |
|   x[((len + 64 >> 9) << 4) + 15] = len;
 | |
| 
 | |
|   var w = Array(80);
 | |
|   var a =  1732584193;
 | |
|   var b = -271733879;
 | |
|   var c = -1732584194;
 | |
|   var d =  271733878;
 | |
|   var e = -1009589776;
 | |
| 
 | |
|   for(var i = 0; i < x.length; i += 16)
 | |
|   {
 | |
|     var olda = a;
 | |
|     var oldb = b;
 | |
|     var oldc = c;
 | |
|     var oldd = d;
 | |
|     var olde = e;
 | |
| 
 | |
|     for(var j = 0; j < 80; j++)
 | |
|     {
 | |
|       if(j < 16) w[j] = x[i + j];
 | |
|       else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
 | |
|       var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
 | |
|                        safe_add(safe_add(e, w[j]), sha1_kt(j)));
 | |
|       e = d;
 | |
|       d = c;
 | |
|       c = bit_rol(b, 30);
 | |
|       b = a;
 | |
|       a = t;
 | |
|     }
 | |
| 
 | |
|     a = safe_add(a, olda);
 | |
|     b = safe_add(b, oldb);
 | |
|     c = safe_add(c, oldc);
 | |
|     d = safe_add(d, oldd);
 | |
|     e = safe_add(e, olde);
 | |
|   }
 | |
|   return Array(a, b, c, d, e);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform the appropriate triplet combination function for the current
 | |
|  * iteration
 | |
|  */
 | |
| function sha1_ft(t, b, c, d)
 | |
| {
 | |
|   if(t < 20) return (b & c) | ((~b) & d);
 | |
|   if(t < 40) return b ^ c ^ d;
 | |
|   if(t < 60) return (b & c) | (b & d) | (c & d);
 | |
|   return b ^ c ^ d;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine the appropriate additive constant for the current iteration
 | |
|  */
 | |
| function sha1_kt(t)
 | |
| {
 | |
|   return (t < 20) ?  1518500249 : (t < 40) ?  1859775393 :
 | |
|          (t < 60) ? -1894007588 : -899497514;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add integers, wrapping at 2^32. This uses 16-bit operations internally
 | |
|  * to work around bugs in some JS interpreters.
 | |
|  */
 | |
| function safe_add(x, y)
 | |
| {
 | |
|   var lsw = (x & 0xFFFF) + (y & 0xFFFF);
 | |
|   var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
 | |
|   return (msw << 16) | (lsw & 0xFFFF);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bitwise rotate a 32-bit number to the left.
 | |
|  */
 | |
| function bit_rol(num, cnt)
 | |
| {
 | |
|   return (num << cnt) | (num >>> (32 - cnt));
 | |
| }
 | |
| 
 |