Files
.examples
.github
alerting
client
config
controller
core
docs
jsonpath
metrics
pattern
security
storage
test
util
vendor
github.com
golang.org
x
crypto
image
draw
font
math
f64
fixed
fixed.go
AUTHORS
CONTRIBUTORS
LICENSE
PATENTS
mod
net
oauth2
sync
sys
tools
xerrors
google.golang.org
gopkg.in
lukechampine.com
modernc.org
modules.txt
watchdog
web
.dockerignore
.gitattributes
.gitignore
Dockerfile
LICENSE
Makefile
README.md
config.yaml
go.mod
go.sum
main.go
gatus/vendor/golang.org/x/image/math/fixed/fixed.go
2021-08-21 18:12:06 -04:00

411 lines
11 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fixed implements fixed-point integer types.
package fixed // import "golang.org/x/image/math/fixed"
import (
"fmt"
)
// TODO: implement fmt.Formatter for %f and %g.
// I returns the integer value i as an Int26_6.
//
// For example, passing the integer value 2 yields Int26_6(128).
func I(i int) Int26_6 {
return Int26_6(i << 6)
}
// Int26_6 is a signed 26.6 fixed-point number.
//
// The integer part ranges from -33554432 to 33554431, inclusive. The
// fractional part has 6 bits of precision.
//
// For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4).
type Int26_6 int32
// String returns a human-readable representation of a 26.6 fixed-point number.
//
// For example, the number one-and-a-quarter becomes "1:16".
func (x Int26_6) String() string {
const shift, mask = 6, 1<<6 - 1
if x >= 0 {
return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask))
}
x = -x
if x >= 0 {
return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask))
}
return "-33554432:00" // The minimum value is -(1<<25).
}
// Floor returns the greatest integer value less than or equal to x.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) }
// Round returns the nearest integer value to x. Ties are rounded up.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Round() int { return int((x + 0x20) >> 6) }
// Ceil returns the least integer value greater than or equal to x.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) }
// Mul returns x*y in 26.6 fixed-point arithmetic.
func (x Int26_6) Mul(y Int26_6) Int26_6 {
return Int26_6((int64(x)*int64(y) + 1<<5) >> 6)
}
// Int52_12 is a signed 52.12 fixed-point number.
//
// The integer part ranges from -2251799813685248 to 2251799813685247,
// inclusive. The fractional part has 12 bits of precision.
//
// For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10).
type Int52_12 int64
// String returns a human-readable representation of a 52.12 fixed-point
// number.
//
// For example, the number one-and-a-quarter becomes "1:1024".
func (x Int52_12) String() string {
const shift, mask = 12, 1<<12 - 1
if x >= 0 {
return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask))
}
x = -x
if x >= 0 {
return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask))
}
return "-2251799813685248:0000" // The minimum value is -(1<<51).
}
// Floor returns the greatest integer value less than or equal to x.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) }
// Round returns the nearest integer value to x. Ties are rounded up.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Round() int { return int((x + 0x800) >> 12) }
// Ceil returns the least integer value greater than or equal to x.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) }
// Mul returns x*y in 52.12 fixed-point arithmetic.
func (x Int52_12) Mul(y Int52_12) Int52_12 {
const M, N = 52, 12
lo, hi := muli64(int64(x), int64(y))
ret := Int52_12(hi<<M | lo>>N)
ret += Int52_12((lo >> (N - 1)) & 1) // Round to nearest, instead of rounding down.
return ret
}
// muli64 multiplies two int64 values, returning the 128-bit signed integer
// result as two uint64 values.
//
// This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu
// function, which is in turn adapted from Hacker's Delight.
func muli64(u, v int64) (lo, hi uint64) {
const (
s = 32
mask = 1<<s - 1
)
u1 := uint64(u >> s)
u0 := uint64(u & mask)
v1 := uint64(v >> s)
v0 := uint64(v & mask)
w0 := u0 * v0
t := u1*v0 + w0>>s
w1 := t & mask
w2 := uint64(int64(t) >> s)
w1 += u0 * v1
return uint64(u) * uint64(v), u1*v1 + w2 + uint64(int64(w1)>>s)
}
// P returns the integer values x and y as a Point26_6.
//
// For example, passing the integer values (2, -3) yields Point26_6{128, -192}.
func P(x, y int) Point26_6 {
return Point26_6{Int26_6(x << 6), Int26_6(y << 6)}
}
// Point26_6 is a 26.6 fixed-point coordinate pair.
//
// It is analogous to the image.Point type in the standard library.
type Point26_6 struct {
X, Y Int26_6
}
// Add returns the vector p+q.
func (p Point26_6) Add(q Point26_6) Point26_6 {
return Point26_6{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point26_6) Sub(q Point26_6) Point26_6 {
return Point26_6{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point26_6) Mul(k Int26_6) Point26_6 {
return Point26_6{p.X * k / 64, p.Y * k / 64}
}
// Div returns the vector p/k.
func (p Point26_6) Div(k Int26_6) Point26_6 {
return Point26_6{p.X * 64 / k, p.Y * 64 / k}
}
// In returns whether p is in r.
func (p Point26_6) In(r Rectangle26_6) bool {
return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
}
// Point52_12 is a 52.12 fixed-point coordinate pair.
//
// It is analogous to the image.Point type in the standard library.
type Point52_12 struct {
X, Y Int52_12
}
// Add returns the vector p+q.
func (p Point52_12) Add(q Point52_12) Point52_12 {
return Point52_12{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point52_12) Sub(q Point52_12) Point52_12 {
return Point52_12{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point52_12) Mul(k Int52_12) Point52_12 {
return Point52_12{p.X * k / 4096, p.Y * k / 4096}
}
// Div returns the vector p/k.
func (p Point52_12) Div(k Int52_12) Point52_12 {
return Point52_12{p.X * 4096 / k, p.Y * 4096 / k}
}
// In returns whether p is in r.
func (p Point52_12) In(r Rectangle52_12) bool {
return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
}
// R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6.
//
// For example, passing the integer values (0, 1, 2, 3) yields
// Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}.
//
// Like the image.Rect function in the standard library, the returned rectangle
// has minimum and maximum coordinates swapped if necessary so that it is
// well-formed.
func R(minX, minY, maxX, maxY int) Rectangle26_6 {
if minX > maxX {
minX, maxX = maxX, minX
}
if minY > maxY {
minY, maxY = maxY, minY
}
return Rectangle26_6{
Point26_6{
Int26_6(minX << 6),
Int26_6(minY << 6),
},
Point26_6{
Int26_6(maxX << 6),
Int26_6(maxY << 6),
},
}
}
// Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is
// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
// Max.X and likewise for Y.
//
// It is analogous to the image.Rectangle type in the standard library.
type Rectangle26_6 struct {
Min, Max Point26_6
}
// Add returns the rectangle r translated by p.
func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 {
return Rectangle26_6{
Point26_6{r.Min.X + p.X, r.Min.Y + p.Y},
Point26_6{r.Max.X + p.X, r.Max.Y + p.Y},
}
}
// Sub returns the rectangle r translated by -p.
func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 {
return Rectangle26_6{
Point26_6{r.Min.X - p.X, r.Min.Y - p.Y},
Point26_6{r.Max.X - p.X, r.Max.Y - p.Y},
}
}
// Intersect returns the largest rectangle contained by both r and s. If the
// two rectangles do not overlap then the zero rectangle will be returned.
func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 {
if r.Min.X < s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y < s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X > s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y > s.Max.Y {
r.Max.Y = s.Max.Y
}
// Letting r0 and s0 be the values of r and s at the time that the method
// is called, this next line is equivalent to:
//
// if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
if r.Empty() {
return Rectangle26_6{}
}
return r
}
// Union returns the smallest rectangle that contains both r and s.
func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 {
if r.Empty() {
return s
}
if s.Empty() {
return r
}
if r.Min.X > s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y > s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X < s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y < s.Max.Y {
r.Max.Y = s.Max.Y
}
return r
}
// Empty returns whether the rectangle contains no points.
func (r Rectangle26_6) Empty() bool {
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
}
// In returns whether every point in r is in s.
func (r Rectangle26_6) In(s Rectangle26_6) bool {
if r.Empty() {
return true
}
// Note that r.Max is an exclusive bound for r, so that r.In(s)
// does not require that r.Max.In(s).
return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
}
// Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is
// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
// Max.X and likewise for Y.
//
// It is analogous to the image.Rectangle type in the standard library.
type Rectangle52_12 struct {
Min, Max Point52_12
}
// Add returns the rectangle r translated by p.
func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 {
return Rectangle52_12{
Point52_12{r.Min.X + p.X, r.Min.Y + p.Y},
Point52_12{r.Max.X + p.X, r.Max.Y + p.Y},
}
}
// Sub returns the rectangle r translated by -p.
func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 {
return Rectangle52_12{
Point52_12{r.Min.X - p.X, r.Min.Y - p.Y},
Point52_12{r.Max.X - p.X, r.Max.Y - p.Y},
}
}
// Intersect returns the largest rectangle contained by both r and s. If the
// two rectangles do not overlap then the zero rectangle will be returned.
func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 {
if r.Min.X < s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y < s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X > s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y > s.Max.Y {
r.Max.Y = s.Max.Y
}
// Letting r0 and s0 be the values of r and s at the time that the method
// is called, this next line is equivalent to:
//
// if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
if r.Empty() {
return Rectangle52_12{}
}
return r
}
// Union returns the smallest rectangle that contains both r and s.
func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 {
if r.Empty() {
return s
}
if s.Empty() {
return r
}
if r.Min.X > s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y > s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X < s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y < s.Max.Y {
r.Max.Y = s.Max.Y
}
return r
}
// Empty returns whether the rectangle contains no points.
func (r Rectangle52_12) Empty() bool {
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
}
// In returns whether every point in r is in s.
func (r Rectangle52_12) In(s Rectangle52_12) bool {
if r.Empty() {
return true
}
// Note that r.Max is an exclusive bound for r, so that r.In(s)
// does not require that r.Max.In(s).
return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
}