#136: Start working on database persistence
This commit is contained in:
383
vendor/modernc.org/mathutil/rnd.go
generated
vendored
Normal file
383
vendor/modernc.org/mathutil/rnd.go
generated
vendored
Normal file
@ -0,0 +1,383 @@
|
||||
// Copyright (c) 2014 The mathutil Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package mathutil // import "modernc.org/mathutil"
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// FC32 is a full cycle PRNG covering the 32 bit signed integer range.
|
||||
// In contrast to full cycle generators shown at e.g. http://en.wikipedia.org/wiki/Full_cycle,
|
||||
// this code doesn't produce values at constant delta (mod cycle length).
|
||||
// The 32 bit limit is per this implementation, the algorithm used has no intrinsic limit on the cycle size.
|
||||
// Properties include:
|
||||
// - Adjustable limits on creation (hi, lo).
|
||||
// - Positionable/randomly accessible (Pos, Seek).
|
||||
// - Repeatable (deterministic).
|
||||
// - Can run forward or backward (Next, Prev).
|
||||
// - For a billion numbers cycle the Next/Prev PRN can be produced in cca 100-150ns.
|
||||
// That's like 5-10 times slower compared to PRNs generated using the (non FC) rand package.
|
||||
type FC32 struct {
|
||||
cycle int64 // On average: 3 * delta / 2, (HQ: 2 * delta)
|
||||
delta int64 // hi - lo
|
||||
factors [][]int64 // This trades some space for hopefully a bit of speed (multiple adding vs multiplying).
|
||||
lo int
|
||||
mods []int // pos % set
|
||||
pos int64 // Within cycle.
|
||||
primes []int64 // Ordered. ∏ primes == cycle.
|
||||
set []int64 // Reordered primes (magnitude order bases) according to seed.
|
||||
}
|
||||
|
||||
// NewFC32 returns a newly created FC32 adjusted for the closed interval [lo, hi] or an Error if any.
|
||||
// If hq == true then trade some generation time for improved (pseudo)randomness.
|
||||
func NewFC32(lo, hi int, hq bool) (r *FC32, err error) {
|
||||
if lo > hi {
|
||||
return nil, fmt.Errorf("invalid range %d > %d", lo, hi)
|
||||
}
|
||||
|
||||
if uint64(hi)-uint64(lo) > math.MaxUint32 {
|
||||
return nil, fmt.Errorf("range out of int32 limits %d, %d", lo, hi)
|
||||
}
|
||||
|
||||
delta := int64(hi) - int64(lo)
|
||||
// Find the primorial covering whole delta
|
||||
n, set, p := int64(1), []int64{}, uint32(2)
|
||||
if hq {
|
||||
p++
|
||||
}
|
||||
for {
|
||||
set = append(set, int64(p))
|
||||
n *= int64(p)
|
||||
if n > delta {
|
||||
break
|
||||
}
|
||||
p, _ = NextPrime(p)
|
||||
}
|
||||
|
||||
// Adjust the set so n ∊ [delta, 2 * delta] (HQ: [delta, 3 * delta])
|
||||
// while keeping the cardinality of the set (correlates with the statistic "randomness quality")
|
||||
// at max, i.e. discard atmost one member.
|
||||
i := -1 // no candidate prime
|
||||
if n > 2*(delta+1) {
|
||||
for j, p := range set {
|
||||
q := n / p
|
||||
if q < delta+1 {
|
||||
break
|
||||
}
|
||||
|
||||
i = j // mark the highest candidate prime set index
|
||||
}
|
||||
}
|
||||
if i >= 0 { // shrink the inner cycle
|
||||
n = n / set[i]
|
||||
set = delete(set, i)
|
||||
}
|
||||
r = &FC32{
|
||||
cycle: n,
|
||||
delta: delta,
|
||||
factors: make([][]int64, len(set)),
|
||||
lo: lo,
|
||||
mods: make([]int, len(set)),
|
||||
primes: set,
|
||||
}
|
||||
r.Seed(1) // the default seed should be always non zero
|
||||
return
|
||||
}
|
||||
|
||||
// Cycle reports the length of the inner FCPRNG cycle.
|
||||
// Cycle is atmost the double (HQ: triple) of the generator period (hi - lo + 1).
|
||||
func (r *FC32) Cycle() int64 {
|
||||
return r.cycle
|
||||
}
|
||||
|
||||
// Next returns the first PRN after Pos.
|
||||
func (r *FC32) Next() int {
|
||||
return r.step(1)
|
||||
}
|
||||
|
||||
// Pos reports the current position within the inner cycle.
|
||||
func (r *FC32) Pos() int64 {
|
||||
return r.pos
|
||||
}
|
||||
|
||||
// Prev return the first PRN before Pos.
|
||||
func (r *FC32) Prev() int {
|
||||
return r.step(-1)
|
||||
}
|
||||
|
||||
// Seed uses the provided seed value to initialize the generator to a deterministic state.
|
||||
// A zero seed produces a "canonical" generator with worse randomness than for most non zero seeds.
|
||||
// Still, the FC property holds for any seed value.
|
||||
func (r *FC32) Seed(seed int64) {
|
||||
u := uint64(seed)
|
||||
r.set = mix(r.primes, &u)
|
||||
n := int64(1)
|
||||
for i, p := range r.set {
|
||||
k := make([]int64, p)
|
||||
v := int64(0)
|
||||
for j := range k {
|
||||
k[j] = v
|
||||
v += n
|
||||
}
|
||||
n *= p
|
||||
r.factors[i] = mix(k, &u)
|
||||
}
|
||||
}
|
||||
|
||||
// Seek sets Pos to |pos| % Cycle.
|
||||
func (r *FC32) Seek(pos int64) { //vet:ignore
|
||||
if pos < 0 {
|
||||
pos = -pos
|
||||
}
|
||||
pos %= r.cycle
|
||||
r.pos = pos
|
||||
for i, p := range r.set {
|
||||
r.mods[i] = int(pos % p)
|
||||
}
|
||||
}
|
||||
|
||||
func (r *FC32) step(dir int) int {
|
||||
for { // avg loops per step: 3/2 (HQ: 2)
|
||||
y := int64(0)
|
||||
pos := r.pos
|
||||
pos += int64(dir)
|
||||
switch {
|
||||
case pos < 0:
|
||||
pos = r.cycle - 1
|
||||
case pos >= r.cycle:
|
||||
pos = 0
|
||||
}
|
||||
r.pos = pos
|
||||
for i, mod := range r.mods {
|
||||
mod += dir
|
||||
p := int(r.set[i])
|
||||
switch {
|
||||
case mod < 0:
|
||||
mod = p - 1
|
||||
case mod >= p:
|
||||
mod = 0
|
||||
}
|
||||
r.mods[i] = mod
|
||||
y += r.factors[i][mod]
|
||||
}
|
||||
if y <= r.delta {
|
||||
return int(y) + r.lo
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func delete(set []int64, i int) (y []int64) {
|
||||
for j, v := range set {
|
||||
if j != i {
|
||||
y = append(y, v)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func mix(set []int64, seed *uint64) (y []int64) {
|
||||
for len(set) != 0 {
|
||||
*seed = rol(*seed)
|
||||
i := int(*seed % uint64(len(set)))
|
||||
y = append(y, set[i])
|
||||
set = delete(set, i)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func rol(u uint64) (y uint64) {
|
||||
y = u << 1
|
||||
if int64(u) < 0 {
|
||||
y |= 1
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// FCBig is a full cycle PRNG covering ranges outside of the int32 limits.
|
||||
// For more info see the FC32 docs.
|
||||
// Next/Prev PRN on a 1e15 cycle can be produced in about 2 µsec.
|
||||
type FCBig struct {
|
||||
cycle *big.Int // On average: 3 * delta / 2, (HQ: 2 * delta)
|
||||
delta *big.Int // hi - lo
|
||||
factors [][]*big.Int // This trades some space for hopefully a bit of speed (multiple adding vs multiplying).
|
||||
lo *big.Int
|
||||
mods []int // pos % set
|
||||
pos *big.Int // Within cycle.
|
||||
primes []int64 // Ordered. ∏ primes == cycle.
|
||||
set []int64 // Reordered primes (magnitude order bases) according to seed.
|
||||
}
|
||||
|
||||
// NewFCBig returns a newly created FCBig adjusted for the closed interval [lo, hi] or an Error if any.
|
||||
// If hq == true then trade some generation time for improved (pseudo)randomness.
|
||||
func NewFCBig(lo, hi *big.Int, hq bool) (r *FCBig, err error) {
|
||||
if lo.Cmp(hi) > 0 {
|
||||
return nil, fmt.Errorf("invalid range %d > %d", lo, hi)
|
||||
}
|
||||
|
||||
delta := big.NewInt(0)
|
||||
delta.Add(delta, hi).Sub(delta, lo)
|
||||
|
||||
// Find the primorial covering whole delta
|
||||
n, set, pp, p := big.NewInt(1), []int64{}, big.NewInt(0), uint32(2)
|
||||
if hq {
|
||||
p++
|
||||
}
|
||||
for {
|
||||
set = append(set, int64(p))
|
||||
pp.SetInt64(int64(p))
|
||||
n.Mul(n, pp)
|
||||
if n.Cmp(delta) > 0 {
|
||||
break
|
||||
}
|
||||
p, _ = NextPrime(p)
|
||||
}
|
||||
|
||||
// Adjust the set so n ∊ [delta, 2 * delta] (HQ: [delta, 3 * delta])
|
||||
// while keeping the cardinality of the set (correlates with the statistic "randomness quality")
|
||||
// at max, i.e. discard atmost one member.
|
||||
dd1 := big.NewInt(1)
|
||||
dd1.Add(dd1, delta)
|
||||
dd2 := big.NewInt(0)
|
||||
dd2.Lsh(dd1, 1)
|
||||
i := -1 // no candidate prime
|
||||
if n.Cmp(dd2) > 0 {
|
||||
q := big.NewInt(0)
|
||||
for j, p := range set {
|
||||
pp.SetInt64(p)
|
||||
q.Set(n)
|
||||
q.Div(q, pp)
|
||||
if q.Cmp(dd1) < 0 {
|
||||
break
|
||||
}
|
||||
|
||||
i = j // mark the highest candidate prime set index
|
||||
}
|
||||
}
|
||||
if i >= 0 { // shrink the inner cycle
|
||||
pp.SetInt64(set[i])
|
||||
n.Div(n, pp)
|
||||
set = delete(set, i)
|
||||
}
|
||||
r = &FCBig{
|
||||
cycle: n,
|
||||
delta: delta,
|
||||
factors: make([][]*big.Int, len(set)),
|
||||
lo: lo,
|
||||
mods: make([]int, len(set)),
|
||||
pos: big.NewInt(0),
|
||||
primes: set,
|
||||
}
|
||||
r.Seed(1) // the default seed should be always non zero
|
||||
return
|
||||
}
|
||||
|
||||
// Cycle reports the length of the inner FCPRNG cycle.
|
||||
// Cycle is atmost the double (HQ: triple) of the generator period (hi - lo + 1).
|
||||
func (r *FCBig) Cycle() *big.Int {
|
||||
return r.cycle
|
||||
}
|
||||
|
||||
// Next returns the first PRN after Pos.
|
||||
func (r *FCBig) Next() *big.Int {
|
||||
return r.step(1)
|
||||
}
|
||||
|
||||
// Pos reports the current position within the inner cycle.
|
||||
func (r *FCBig) Pos() *big.Int {
|
||||
return r.pos
|
||||
}
|
||||
|
||||
// Prev return the first PRN before Pos.
|
||||
func (r *FCBig) Prev() *big.Int {
|
||||
return r.step(-1)
|
||||
}
|
||||
|
||||
// Seed uses the provided seed value to initialize the generator to a deterministic state.
|
||||
// A zero seed produces a "canonical" generator with worse randomness than for most non zero seeds.
|
||||
// Still, the FC property holds for any seed value.
|
||||
func (r *FCBig) Seed(seed int64) {
|
||||
u := uint64(seed)
|
||||
r.set = mix(r.primes, &u)
|
||||
n := big.NewInt(1)
|
||||
v := big.NewInt(0)
|
||||
pp := big.NewInt(0)
|
||||
for i, p := range r.set {
|
||||
k := make([]*big.Int, p)
|
||||
v.SetInt64(0)
|
||||
for j := range k {
|
||||
k[j] = big.NewInt(0)
|
||||
k[j].Set(v)
|
||||
v.Add(v, n)
|
||||
}
|
||||
pp.SetInt64(p)
|
||||
n.Mul(n, pp)
|
||||
r.factors[i] = mixBig(k, &u)
|
||||
}
|
||||
}
|
||||
|
||||
// Seek sets Pos to |pos| % Cycle.
|
||||
func (r *FCBig) Seek(pos *big.Int) {
|
||||
r.pos.Set(pos)
|
||||
r.pos.Abs(r.pos)
|
||||
r.pos.Mod(r.pos, r.cycle)
|
||||
mod := big.NewInt(0)
|
||||
pp := big.NewInt(0)
|
||||
for i, p := range r.set {
|
||||
pp.SetInt64(p)
|
||||
r.mods[i] = int(mod.Mod(r.pos, pp).Int64())
|
||||
}
|
||||
}
|
||||
|
||||
func (r *FCBig) step(dir int) (y *big.Int) {
|
||||
y = big.NewInt(0)
|
||||
d := big.NewInt(int64(dir))
|
||||
for { // avg loops per step: 3/2 (HQ: 2)
|
||||
r.pos.Add(r.pos, d)
|
||||
switch {
|
||||
case r.pos.Sign() < 0:
|
||||
r.pos.Add(r.pos, r.cycle)
|
||||
case r.pos.Cmp(r.cycle) >= 0:
|
||||
r.pos.SetInt64(0)
|
||||
}
|
||||
for i, mod := range r.mods {
|
||||
mod += dir
|
||||
p := int(r.set[i])
|
||||
switch {
|
||||
case mod < 0:
|
||||
mod = p - 1
|
||||
case mod >= p:
|
||||
mod = 0
|
||||
}
|
||||
r.mods[i] = mod
|
||||
y.Add(y, r.factors[i][mod])
|
||||
}
|
||||
if y.Cmp(r.delta) <= 0 {
|
||||
y.Add(y, r.lo)
|
||||
return
|
||||
}
|
||||
y.SetInt64(0)
|
||||
}
|
||||
}
|
||||
|
||||
func deleteBig(set []*big.Int, i int) (y []*big.Int) {
|
||||
for j, v := range set {
|
||||
if j != i {
|
||||
y = append(y, v)
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func mixBig(set []*big.Int, seed *uint64) (y []*big.Int) {
|
||||
for len(set) != 0 {
|
||||
*seed = rol(*seed)
|
||||
i := int(*seed % uint64(len(set)))
|
||||
y = append(y, set[i])
|
||||
set = deleteBig(set, i)
|
||||
}
|
||||
return
|
||||
}
|
Reference in New Issue
Block a user