#136: Start working on database persistence
This commit is contained in:
27
vendor/github.com/remyoudompheng/bigfft/LICENSE
generated
vendored
Normal file
27
vendor/github.com/remyoudompheng/bigfft/LICENSE
generated
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
Copyright (c) 2012 The Go Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
43
vendor/github.com/remyoudompheng/bigfft/README
generated
vendored
Normal file
43
vendor/github.com/remyoudompheng/bigfft/README
generated
vendored
Normal file
@ -0,0 +1,43 @@
|
||||
Benchmarking math/big vs. bigfft
|
||||
|
||||
Number size old ns/op new ns/op delta
|
||||
1kb 1599 1640 +2.56%
|
||||
10kb 61533 62170 +1.04%
|
||||
50kb 833693 831051 -0.32%
|
||||
100kb 2567995 2693864 +4.90%
|
||||
1Mb 105237800 28446400 -72.97%
|
||||
5Mb 1272947000 168554600 -86.76%
|
||||
10Mb 3834354000 405120200 -89.43%
|
||||
20Mb 11514488000 845081600 -92.66%
|
||||
50Mb 49199945000 2893950000 -94.12%
|
||||
100Mb 147599836000 5921594000 -95.99%
|
||||
|
||||
Benchmarking GMP vs bigfft
|
||||
|
||||
Number size GMP ns/op Go ns/op delta
|
||||
1kb 536 1500 +179.85%
|
||||
10kb 26669 50777 +90.40%
|
||||
50kb 252270 658534 +161.04%
|
||||
100kb 686813 2127534 +209.77%
|
||||
1Mb 12100000 22391830 +85.06%
|
||||
5Mb 111731843 133550600 +19.53%
|
||||
10Mb 212314000 318595800 +50.06%
|
||||
20Mb 490196000 671512800 +36.99%
|
||||
50Mb 1280000000 2451476000 +91.52%
|
||||
100Mb 2673000000 5228991000 +95.62%
|
||||
|
||||
Benchmarks were run on a Core 2 Quad Q8200 (2.33GHz).
|
||||
FFT is enabled when input numbers are over 200kbits.
|
||||
|
||||
Scanning large decimal number from strings.
|
||||
(math/big [n^2 complexity] vs bigfft [n^1.6 complexity], Core i5-4590)
|
||||
|
||||
Digits old ns/op new ns/op delta
|
||||
1e3 9995 10876 +8.81%
|
||||
1e4 175356 243806 +39.03%
|
||||
1e5 9427422 6780545 -28.08%
|
||||
1e6 1776707489 144867502 -91.85%
|
||||
2e6 6865499995 346540778 -94.95%
|
||||
5e6 42641034189 1069878799 -97.49%
|
||||
10e6 151975273589 2693328580 -98.23%
|
||||
|
36
vendor/github.com/remyoudompheng/bigfft/arith_386.s
generated
vendored
Normal file
36
vendor/github.com/remyoudompheng/bigfft/arith_386.s
generated
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
JMP math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addMulVVW(SB)
|
||||
|
38
vendor/github.com/remyoudompheng/bigfft/arith_amd64.s
generated
vendored
Normal file
38
vendor/github.com/remyoudompheng/bigfft/arith_amd64.s
generated
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
// (same as addVV except for SBBQ instead of ADCQ and label names)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
JMP math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addMulVVW(SB)
|
||||
|
36
vendor/github.com/remyoudompheng/bigfft/arith_arm.s
generated
vendored
Normal file
36
vendor/github.com/remyoudompheng/bigfft/arith_arm.s
generated
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
B math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
B math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
B math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
B math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
B math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
B math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
B math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
B math∕big·addMulVVW(SB)
|
||||
|
36
vendor/github.com/remyoudompheng/bigfft/arith_arm64.s
generated
vendored
Normal file
36
vendor/github.com/remyoudompheng/bigfft/arith_arm64.s
generated
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
B math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
B math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
B math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
B math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
B math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
B math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
B math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
B math∕big·addMulVVW(SB)
|
||||
|
16
vendor/github.com/remyoudompheng/bigfft/arith_decl.go
generated
vendored
Normal file
16
vendor/github.com/remyoudompheng/bigfft/arith_decl.go
generated
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
// Copyright 2010 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package bigfft
|
||||
|
||||
import . "math/big"
|
||||
|
||||
// implemented in arith_$GOARCH.s
|
||||
func addVV(z, x, y []Word) (c Word)
|
||||
func subVV(z, x, y []Word) (c Word)
|
||||
func addVW(z, x []Word, y Word) (c Word)
|
||||
func subVW(z, x []Word, y Word) (c Word)
|
||||
func shlVU(z, x []Word, s uint) (c Word)
|
||||
func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
func addMulVVW(z, x []Word, y Word) (c Word)
|
40
vendor/github.com/remyoudompheng/bigfft/arith_mips64x.s
generated
vendored
Normal file
40
vendor/github.com/remyoudompheng/bigfft/arith_mips64x.s
generated
vendored
Normal file
@ -0,0 +1,40 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
// +build mips64 mips64le
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
// (same as addVV except for SBBQ instead of ADCQ and label names)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
JMP math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addMulVVW(SB)
|
||||
|
40
vendor/github.com/remyoudompheng/bigfft/arith_mipsx.s
generated
vendored
Normal file
40
vendor/github.com/remyoudompheng/bigfft/arith_mipsx.s
generated
vendored
Normal file
@ -0,0 +1,40 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
// +build mips mipsle
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
// (same as addVV except for SBBQ instead of ADCQ and label names)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
JMP math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
JMP math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
JMP math∕big·addMulVVW(SB)
|
||||
|
38
vendor/github.com/remyoudompheng/bigfft/arith_ppc64x.s
generated
vendored
Normal file
38
vendor/github.com/remyoudompheng/bigfft/arith_ppc64x.s
generated
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
// +build ppc64 ppc64le
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
BR math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
BR math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
BR math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
BR math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
BR math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
BR math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
BR math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
BR math∕big·addMulVVW(SB)
|
||||
|
37
vendor/github.com/remyoudompheng/bigfft/arith_s390x.s
generated
vendored
Normal file
37
vendor/github.com/remyoudompheng/bigfft/arith_s390x.s
generated
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
|
||||
// Trampolines to math/big assembly implementations.
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func addVV(z, x, y []Word) (c Word)
|
||||
TEXT ·addVV(SB),NOSPLIT,$0
|
||||
BR math∕big·addVV(SB)
|
||||
|
||||
// func subVV(z, x, y []Word) (c Word)
|
||||
TEXT ·subVV(SB),NOSPLIT,$0
|
||||
BR math∕big·subVV(SB)
|
||||
|
||||
// func addVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addVW(SB),NOSPLIT,$0
|
||||
BR math∕big·addVW(SB)
|
||||
|
||||
// func subVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·subVW(SB),NOSPLIT,$0
|
||||
BR math∕big·subVW(SB)
|
||||
|
||||
// func shlVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shlVU(SB),NOSPLIT,$0
|
||||
BR math∕big·shlVU(SB)
|
||||
|
||||
// func shrVU(z, x []Word, s uint) (c Word)
|
||||
TEXT ·shrVU(SB),NOSPLIT,$0
|
||||
BR math∕big·shrVU(SB)
|
||||
|
||||
// func mulAddVWW(z, x []Word, y, r Word) (c Word)
|
||||
TEXT ·mulAddVWW(SB),NOSPLIT,$0
|
||||
BR math∕big·mulAddVWW(SB)
|
||||
|
||||
// func addMulVVW(z, x []Word, y Word) (c Word)
|
||||
TEXT ·addMulVVW(SB),NOSPLIT,$0
|
||||
BR math∕big·addMulVVW(SB)
|
||||
|
216
vendor/github.com/remyoudompheng/bigfft/fermat.go
generated
vendored
Normal file
216
vendor/github.com/remyoudompheng/bigfft/fermat.go
generated
vendored
Normal file
@ -0,0 +1,216 @@
|
||||
package bigfft
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Arithmetic modulo 2^n+1.
|
||||
|
||||
// A fermat of length w+1 represents a number modulo 2^(w*_W) + 1. The last
|
||||
// word is zero or one. A number has at most two representatives satisfying the
|
||||
// 0-1 last word constraint.
|
||||
type fermat nat
|
||||
|
||||
func (n fermat) String() string { return nat(n).String() }
|
||||
|
||||
func (z fermat) norm() {
|
||||
n := len(z) - 1
|
||||
c := z[n]
|
||||
if c == 0 {
|
||||
return
|
||||
}
|
||||
if z[0] >= c {
|
||||
z[n] = 0
|
||||
z[0] -= c
|
||||
return
|
||||
}
|
||||
// z[0] < z[n].
|
||||
subVW(z, z, c) // Substract c
|
||||
if c > 1 {
|
||||
z[n] -= c - 1
|
||||
c = 1
|
||||
}
|
||||
// Add back c.
|
||||
if z[n] == 1 {
|
||||
z[n] = 0
|
||||
return
|
||||
} else {
|
||||
addVW(z, z, 1)
|
||||
}
|
||||
}
|
||||
|
||||
// Shift computes (x << k) mod (2^n+1).
|
||||
func (z fermat) Shift(x fermat, k int) {
|
||||
if len(z) != len(x) {
|
||||
panic("len(z) != len(x) in Shift")
|
||||
}
|
||||
n := len(x) - 1
|
||||
// Shift by n*_W is taking the opposite.
|
||||
k %= 2 * n * _W
|
||||
if k < 0 {
|
||||
k += 2 * n * _W
|
||||
}
|
||||
neg := false
|
||||
if k >= n*_W {
|
||||
k -= n * _W
|
||||
neg = true
|
||||
}
|
||||
|
||||
kw, kb := k/_W, k%_W
|
||||
|
||||
z[n] = 1 // Add (-1)
|
||||
if !neg {
|
||||
for i := 0; i < kw; i++ {
|
||||
z[i] = 0
|
||||
}
|
||||
// Shift left by kw words.
|
||||
// x = a·2^(n-k) + b
|
||||
// x<<k = (b<<k) - a
|
||||
copy(z[kw:], x[:n-kw])
|
||||
b := subVV(z[:kw+1], z[:kw+1], x[n-kw:])
|
||||
if z[kw+1] > 0 {
|
||||
z[kw+1] -= b
|
||||
} else {
|
||||
subVW(z[kw+1:], z[kw+1:], b)
|
||||
}
|
||||
} else {
|
||||
for i := kw + 1; i < n; i++ {
|
||||
z[i] = 0
|
||||
}
|
||||
// Shift left and negate, by kw words.
|
||||
copy(z[:kw+1], x[n-kw:n+1]) // z_low = x_high
|
||||
b := subVV(z[kw:n], z[kw:n], x[:n-kw]) // z_high -= x_low
|
||||
z[n] -= b
|
||||
}
|
||||
// Add back 1.
|
||||
if z[n] > 0 {
|
||||
z[n]--
|
||||
} else if z[0] < ^big.Word(0) {
|
||||
z[0]++
|
||||
} else {
|
||||
addVW(z, z, 1)
|
||||
}
|
||||
// Shift left by kb bits
|
||||
shlVU(z, z, uint(kb))
|
||||
z.norm()
|
||||
}
|
||||
|
||||
// ShiftHalf shifts x by k/2 bits the left. Shifting by 1/2 bit
|
||||
// is multiplication by sqrt(2) mod 2^n+1 which is 2^(3n/4) - 2^(n/4).
|
||||
// A temporary buffer must be provided in tmp.
|
||||
func (z fermat) ShiftHalf(x fermat, k int, tmp fermat) {
|
||||
n := len(z) - 1
|
||||
if k%2 == 0 {
|
||||
z.Shift(x, k/2)
|
||||
return
|
||||
}
|
||||
u := (k - 1) / 2
|
||||
a := u + (3*_W/4)*n
|
||||
b := u + (_W/4)*n
|
||||
z.Shift(x, a)
|
||||
tmp.Shift(x, b)
|
||||
z.Sub(z, tmp)
|
||||
}
|
||||
|
||||
// Add computes addition mod 2^n+1.
|
||||
func (z fermat) Add(x, y fermat) fermat {
|
||||
if len(z) != len(x) {
|
||||
panic("Add: len(z) != len(x)")
|
||||
}
|
||||
addVV(z, x, y) // there cannot be a carry here.
|
||||
z.norm()
|
||||
return z
|
||||
}
|
||||
|
||||
// Sub computes substraction mod 2^n+1.
|
||||
func (z fermat) Sub(x, y fermat) fermat {
|
||||
if len(z) != len(x) {
|
||||
panic("Add: len(z) != len(x)")
|
||||
}
|
||||
n := len(y) - 1
|
||||
b := subVV(z[:n], x[:n], y[:n])
|
||||
b += y[n]
|
||||
// If b > 0, we need to subtract b<<n, which is the same as adding b.
|
||||
z[n] = x[n]
|
||||
if z[0] <= ^big.Word(0)-b {
|
||||
z[0] += b
|
||||
} else {
|
||||
addVW(z, z, b)
|
||||
}
|
||||
z.norm()
|
||||
return z
|
||||
}
|
||||
|
||||
func (z fermat) Mul(x, y fermat) fermat {
|
||||
if len(x) != len(y) {
|
||||
panic("Mul: len(x) != len(y)")
|
||||
}
|
||||
n := len(x) - 1
|
||||
if n < 30 {
|
||||
z = z[:2*n+2]
|
||||
basicMul(z, x, y)
|
||||
z = z[:2*n+1]
|
||||
} else {
|
||||
var xi, yi, zi big.Int
|
||||
xi.SetBits(x)
|
||||
yi.SetBits(y)
|
||||
zi.SetBits(z)
|
||||
zb := zi.Mul(&xi, &yi).Bits()
|
||||
if len(zb) <= n {
|
||||
// Short product.
|
||||
copy(z, zb)
|
||||
for i := len(zb); i < len(z); i++ {
|
||||
z[i] = 0
|
||||
}
|
||||
return z
|
||||
}
|
||||
z = zb
|
||||
}
|
||||
// len(z) is at most 2n+1.
|
||||
if len(z) > 2*n+1 {
|
||||
panic("len(z) > 2n+1")
|
||||
}
|
||||
// We now have
|
||||
// z = z[:n] + 1<<(n*W) * z[n:2n+1]
|
||||
// which normalizes to:
|
||||
// z = z[:n] - z[n:2n] + z[2n]
|
||||
c1 := big.Word(0)
|
||||
if len(z) > 2*n {
|
||||
c1 = addVW(z[:n], z[:n], z[2*n])
|
||||
}
|
||||
c2 := big.Word(0)
|
||||
if len(z) >= 2*n {
|
||||
c2 = subVV(z[:n], z[:n], z[n:2*n])
|
||||
} else {
|
||||
m := len(z) - n
|
||||
c2 = subVV(z[:m], z[:m], z[n:])
|
||||
c2 = subVW(z[m:n], z[m:n], c2)
|
||||
}
|
||||
// Restore carries.
|
||||
// Substracting z[n] -= c2 is the same
|
||||
// as z[0] += c2
|
||||
z = z[:n+1]
|
||||
z[n] = c1
|
||||
c := addVW(z, z, c2)
|
||||
if c != 0 {
|
||||
panic("impossible")
|
||||
}
|
||||
z.norm()
|
||||
return z
|
||||
}
|
||||
|
||||
// copied from math/big
|
||||
//
|
||||
// basicMul multiplies x and y and leaves the result in z.
|
||||
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
|
||||
func basicMul(z, x, y fermat) {
|
||||
// initialize z
|
||||
for i := 0; i < len(z); i++ {
|
||||
z[i] = 0
|
||||
}
|
||||
for i, d := range y {
|
||||
if d != 0 {
|
||||
z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
|
||||
}
|
||||
}
|
||||
}
|
370
vendor/github.com/remyoudompheng/bigfft/fft.go
generated
vendored
Normal file
370
vendor/github.com/remyoudompheng/bigfft/fft.go
generated
vendored
Normal file
@ -0,0 +1,370 @@
|
||||
// Package bigfft implements multiplication of big.Int using FFT.
|
||||
//
|
||||
// The implementation is based on the Schönhage-Strassen method
|
||||
// using integer FFT modulo 2^n+1.
|
||||
package bigfft
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
const _W = int(unsafe.Sizeof(big.Word(0)) * 8)
|
||||
|
||||
type nat []big.Word
|
||||
|
||||
func (n nat) String() string {
|
||||
v := new(big.Int)
|
||||
v.SetBits(n)
|
||||
return v.String()
|
||||
}
|
||||
|
||||
// fftThreshold is the size (in words) above which FFT is used over
|
||||
// Karatsuba from math/big.
|
||||
//
|
||||
// TestCalibrate seems to indicate a threshold of 60kbits on 32-bit
|
||||
// arches and 110kbits on 64-bit arches.
|
||||
var fftThreshold = 1800
|
||||
|
||||
// Mul computes the product x*y and returns z.
|
||||
// It can be used instead of the Mul method of
|
||||
// *big.Int from math/big package.
|
||||
func Mul(x, y *big.Int) *big.Int {
|
||||
xwords := len(x.Bits())
|
||||
ywords := len(y.Bits())
|
||||
if xwords > fftThreshold && ywords > fftThreshold {
|
||||
return mulFFT(x, y)
|
||||
}
|
||||
return new(big.Int).Mul(x, y)
|
||||
}
|
||||
|
||||
func mulFFT(x, y *big.Int) *big.Int {
|
||||
var xb, yb nat = x.Bits(), y.Bits()
|
||||
zb := fftmul(xb, yb)
|
||||
z := new(big.Int)
|
||||
z.SetBits(zb)
|
||||
if x.Sign()*y.Sign() < 0 {
|
||||
z.Neg(z)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// A FFT size of K=1<<k is adequate when K is about 2*sqrt(N) where
|
||||
// N = x.Bitlen() + y.Bitlen().
|
||||
|
||||
func fftmul(x, y nat) nat {
|
||||
k, m := fftSize(x, y)
|
||||
xp := polyFromNat(x, k, m)
|
||||
yp := polyFromNat(y, k, m)
|
||||
rp := xp.Mul(&yp)
|
||||
return rp.Int()
|
||||
}
|
||||
|
||||
// fftSizeThreshold[i] is the maximal size (in bits) where we should use
|
||||
// fft size i.
|
||||
var fftSizeThreshold = [...]int64{0, 0, 0,
|
||||
4 << 10, 8 << 10, 16 << 10, // 5
|
||||
32 << 10, 64 << 10, 1 << 18, 1 << 20, 3 << 20, // 10
|
||||
8 << 20, 30 << 20, 100 << 20, 300 << 20, 600 << 20,
|
||||
}
|
||||
|
||||
// returns the FFT length k, m the number of words per chunk
|
||||
// such that m << k is larger than the number of words
|
||||
// in x*y.
|
||||
func fftSize(x, y nat) (k uint, m int) {
|
||||
words := len(x) + len(y)
|
||||
bits := int64(words) * int64(_W)
|
||||
k = uint(len(fftSizeThreshold))
|
||||
for i := range fftSizeThreshold {
|
||||
if fftSizeThreshold[i] > bits {
|
||||
k = uint(i)
|
||||
break
|
||||
}
|
||||
}
|
||||
// The 1<<k chunks of m words must have N bits so that
|
||||
// 2^N-1 is larger than x*y. That is, m<<k > words
|
||||
m = words>>k + 1
|
||||
return
|
||||
}
|
||||
|
||||
// valueSize returns the length (in words) to use for polynomial
|
||||
// coefficients, to compute a correct product of polynomials P*Q
|
||||
// where deg(P*Q) < K (== 1<<k) and where coefficients of P and Q are
|
||||
// less than b^m (== 1 << (m*_W)).
|
||||
// The chosen length (in bits) must be a multiple of 1 << (k-extra).
|
||||
func valueSize(k uint, m int, extra uint) int {
|
||||
// The coefficients of P*Q are less than b^(2m)*K
|
||||
// so we need W * valueSize >= 2*m*W+K
|
||||
n := 2*m*_W + int(k) // necessary bits
|
||||
K := 1 << (k - extra)
|
||||
if K < _W {
|
||||
K = _W
|
||||
}
|
||||
n = ((n / K) + 1) * K // round to a multiple of K
|
||||
return n / _W
|
||||
}
|
||||
|
||||
// poly represents an integer via a polynomial in Z[x]/(x^K+1)
|
||||
// where K is the FFT length and b^m is the computation basis 1<<(m*_W).
|
||||
// If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number
|
||||
// is P(b^m).
|
||||
type poly struct {
|
||||
k uint // k is such that K = 1<<k.
|
||||
m int // the m such that P(b^m) is the original number.
|
||||
a []nat // a slice of at most K m-word coefficients.
|
||||
}
|
||||
|
||||
// polyFromNat slices the number x into a polynomial
|
||||
// with 1<<k coefficients made of m words.
|
||||
func polyFromNat(x nat, k uint, m int) poly {
|
||||
p := poly{k: k, m: m}
|
||||
length := len(x)/m + 1
|
||||
p.a = make([]nat, length)
|
||||
for i := range p.a {
|
||||
if len(x) < m {
|
||||
p.a[i] = make(nat, m)
|
||||
copy(p.a[i], x)
|
||||
break
|
||||
}
|
||||
p.a[i] = x[:m]
|
||||
x = x[m:]
|
||||
}
|
||||
return p
|
||||
}
|
||||
|
||||
// Int evaluates back a poly to its integer value.
|
||||
func (p *poly) Int() nat {
|
||||
length := len(p.a)*p.m + 1
|
||||
if na := len(p.a); na > 0 {
|
||||
length += len(p.a[na-1])
|
||||
}
|
||||
n := make(nat, length)
|
||||
m := p.m
|
||||
np := n
|
||||
for i := range p.a {
|
||||
l := len(p.a[i])
|
||||
c := addVV(np[:l], np[:l], p.a[i])
|
||||
if np[l] < ^big.Word(0) {
|
||||
np[l] += c
|
||||
} else {
|
||||
addVW(np[l:], np[l:], c)
|
||||
}
|
||||
np = np[m:]
|
||||
}
|
||||
n = trim(n)
|
||||
return n
|
||||
}
|
||||
|
||||
func trim(n nat) nat {
|
||||
for i := range n {
|
||||
if n[len(n)-1-i] != 0 {
|
||||
return n[:len(n)-i]
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Mul multiplies p and q modulo X^K-1, where K = 1<<p.k.
|
||||
// The product is done via a Fourier transform.
|
||||
func (p *poly) Mul(q *poly) poly {
|
||||
// extra=2 because:
|
||||
// * some power of 2 is a K-th root of unity when n is a multiple of K/2.
|
||||
// * 2 itself is a square (see fermat.ShiftHalf)
|
||||
n := valueSize(p.k, p.m, 2)
|
||||
|
||||
pv, qv := p.Transform(n), q.Transform(n)
|
||||
rv := pv.Mul(&qv)
|
||||
r := rv.InvTransform()
|
||||
r.m = p.m
|
||||
return r
|
||||
}
|
||||
|
||||
// A polValues represents the value of a poly at the powers of a
|
||||
// K-th root of unity θ=2^(l/2) in Z/(b^n+1)Z, where b^n = 2^(K/4*l).
|
||||
type polValues struct {
|
||||
k uint // k is such that K = 1<<k.
|
||||
n int // the length of coefficients, n*_W a multiple of K/4.
|
||||
values []fermat // a slice of K (n+1)-word values
|
||||
}
|
||||
|
||||
// Transform evaluates p at θ^i for i = 0...K-1, where
|
||||
// θ is a K-th primitive root of unity in Z/(b^n+1)Z.
|
||||
func (p *poly) Transform(n int) polValues {
|
||||
k := p.k
|
||||
inputbits := make([]big.Word, (n+1)<<k)
|
||||
input := make([]fermat, 1<<k)
|
||||
// Now computed q(ω^i) for i = 0 ... K-1
|
||||
valbits := make([]big.Word, (n+1)<<k)
|
||||
values := make([]fermat, 1<<k)
|
||||
for i := range values {
|
||||
input[i] = inputbits[i*(n+1) : (i+1)*(n+1)]
|
||||
if i < len(p.a) {
|
||||
copy(input[i], p.a[i])
|
||||
}
|
||||
values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
|
||||
}
|
||||
fourier(values, input, false, n, k)
|
||||
return polValues{k, n, values}
|
||||
}
|
||||
|
||||
// InvTransform reconstructs p (modulo X^K - 1) from its
|
||||
// values at θ^i for i = 0..K-1.
|
||||
func (v *polValues) InvTransform() poly {
|
||||
k, n := v.k, v.n
|
||||
|
||||
// Perform an inverse Fourier transform to recover p.
|
||||
pbits := make([]big.Word, (n+1)<<k)
|
||||
p := make([]fermat, 1<<k)
|
||||
for i := range p {
|
||||
p[i] = fermat(pbits[i*(n+1) : (i+1)*(n+1)])
|
||||
}
|
||||
fourier(p, v.values, true, n, k)
|
||||
// Divide by K, and untwist q to recover p.
|
||||
u := make(fermat, n+1)
|
||||
a := make([]nat, 1<<k)
|
||||
for i := range p {
|
||||
u.Shift(p[i], -int(k))
|
||||
copy(p[i], u)
|
||||
a[i] = nat(p[i])
|
||||
}
|
||||
return poly{k: k, m: 0, a: a}
|
||||
}
|
||||
|
||||
// NTransform evaluates p at θω^i for i = 0...K-1, where
|
||||
// θ is a (2K)-th primitive root of unity in Z/(b^n+1)Z
|
||||
// and ω = θ².
|
||||
func (p *poly) NTransform(n int) polValues {
|
||||
k := p.k
|
||||
if len(p.a) >= 1<<k {
|
||||
panic("Transform: len(p.a) >= 1<<k")
|
||||
}
|
||||
// θ is represented as a shift.
|
||||
θshift := (n * _W) >> k
|
||||
// p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1)
|
||||
// p(θx) = q(x) where
|
||||
// q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1)
|
||||
//
|
||||
// Twist p by θ to obtain q.
|
||||
tbits := make([]big.Word, (n+1)<<k)
|
||||
twisted := make([]fermat, 1<<k)
|
||||
src := make(fermat, n+1)
|
||||
for i := range twisted {
|
||||
twisted[i] = fermat(tbits[i*(n+1) : (i+1)*(n+1)])
|
||||
if i < len(p.a) {
|
||||
for i := range src {
|
||||
src[i] = 0
|
||||
}
|
||||
copy(src, p.a[i])
|
||||
twisted[i].Shift(src, θshift*i)
|
||||
}
|
||||
}
|
||||
|
||||
// Now computed q(ω^i) for i = 0 ... K-1
|
||||
valbits := make([]big.Word, (n+1)<<k)
|
||||
values := make([]fermat, 1<<k)
|
||||
for i := range values {
|
||||
values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)])
|
||||
}
|
||||
fourier(values, twisted, false, n, k)
|
||||
return polValues{k, n, values}
|
||||
}
|
||||
|
||||
// InvTransform reconstructs a polynomial from its values at
|
||||
// roots of x^K+1. The m field of the returned polynomial
|
||||
// is unspecified.
|
||||
func (v *polValues) InvNTransform() poly {
|
||||
k := v.k
|
||||
n := v.n
|
||||
θshift := (n * _W) >> k
|
||||
|
||||
// Perform an inverse Fourier transform to recover q.
|
||||
qbits := make([]big.Word, (n+1)<<k)
|
||||
q := make([]fermat, 1<<k)
|
||||
for i := range q {
|
||||
q[i] = fermat(qbits[i*(n+1) : (i+1)*(n+1)])
|
||||
}
|
||||
fourier(q, v.values, true, n, k)
|
||||
|
||||
// Divide by K, and untwist q to recover p.
|
||||
u := make(fermat, n+1)
|
||||
a := make([]nat, 1<<k)
|
||||
for i := range q {
|
||||
u.Shift(q[i], -int(k)-i*θshift)
|
||||
copy(q[i], u)
|
||||
a[i] = nat(q[i])
|
||||
}
|
||||
return poly{k: k, m: 0, a: a}
|
||||
}
|
||||
|
||||
// fourier performs an unnormalized Fourier transform
|
||||
// of src, a length 1<<k vector of numbers modulo b^n+1
|
||||
// where b = 1<<_W.
|
||||
func fourier(dst []fermat, src []fermat, backward bool, n int, k uint) {
|
||||
var rec func(dst, src []fermat, size uint)
|
||||
tmp := make(fermat, n+1) // pre-allocate temporary variables.
|
||||
tmp2 := make(fermat, n+1) // pre-allocate temporary variables.
|
||||
|
||||
// The recursion function of the FFT.
|
||||
// The root of unity used in the transform is ω=1<<(ω2shift/2).
|
||||
// The source array may use shifted indices (i.e. the i-th
|
||||
// element is src[i << idxShift]).
|
||||
rec = func(dst, src []fermat, size uint) {
|
||||
idxShift := k - size
|
||||
ω2shift := (4 * n * _W) >> size
|
||||
if backward {
|
||||
ω2shift = -ω2shift
|
||||
}
|
||||
|
||||
// Easy cases.
|
||||
if len(src[0]) != n+1 || len(dst[0]) != n+1 {
|
||||
panic("len(src[0]) != n+1 || len(dst[0]) != n+1")
|
||||
}
|
||||
switch size {
|
||||
case 0:
|
||||
copy(dst[0], src[0])
|
||||
return
|
||||
case 1:
|
||||
dst[0].Add(src[0], src[1<<idxShift]) // dst[0] = src[0] + src[1]
|
||||
dst[1].Sub(src[0], src[1<<idxShift]) // dst[1] = src[0] - src[1]
|
||||
return
|
||||
}
|
||||
|
||||
// Let P(x) = src[0] + src[1<<idxShift] * x + ... + src[K-1 << idxShift] * x^(K-1)
|
||||
// The P(x) = Q1(x²) + x*Q2(x²)
|
||||
// where Q1's coefficients are src with indices shifted by 1
|
||||
// where Q2's coefficients are src[1<<idxShift:] with indices shifted by 1
|
||||
|
||||
// Split destination vectors in halves.
|
||||
dst1 := dst[:1<<(size-1)]
|
||||
dst2 := dst[1<<(size-1):]
|
||||
// Transform Q1 and Q2 in the halves.
|
||||
rec(dst1, src, size-1)
|
||||
rec(dst2, src[1<<idxShift:], size-1)
|
||||
|
||||
// Reconstruct P's transform from transforms of Q1 and Q2.
|
||||
// dst[i] is dst1[i] + ω^i * dst2[i]
|
||||
// dst[i + 1<<(k-1)] is dst1[i] + ω^(i+K/2) * dst2[i]
|
||||
//
|
||||
for i := range dst1 {
|
||||
tmp.ShiftHalf(dst2[i], i*ω2shift, tmp2) // ω^i * dst2[i]
|
||||
dst2[i].Sub(dst1[i], tmp)
|
||||
dst1[i].Add(dst1[i], tmp)
|
||||
}
|
||||
}
|
||||
rec(dst, src, k)
|
||||
}
|
||||
|
||||
// Mul returns the pointwise product of p and q.
|
||||
func (p *polValues) Mul(q *polValues) (r polValues) {
|
||||
n := p.n
|
||||
r.k, r.n = p.k, p.n
|
||||
r.values = make([]fermat, len(p.values))
|
||||
bits := make([]big.Word, len(p.values)*(n+1))
|
||||
buf := make(fermat, 8*n)
|
||||
for i := range r.values {
|
||||
r.values[i] = bits[i*(n+1) : (i+1)*(n+1)]
|
||||
z := buf.Mul(p.values[i], q.values[i])
|
||||
copy(r.values[i], z)
|
||||
}
|
||||
return
|
||||
}
|
3
vendor/github.com/remyoudompheng/bigfft/go.mod
generated
vendored
Normal file
3
vendor/github.com/remyoudompheng/bigfft/go.mod
generated
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
module github.com/remyoudompheng/bigfft
|
||||
|
||||
go 1.12
|
70
vendor/github.com/remyoudompheng/bigfft/scan.go
generated
vendored
Normal file
70
vendor/github.com/remyoudompheng/bigfft/scan.go
generated
vendored
Normal file
@ -0,0 +1,70 @@
|
||||
package bigfft
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// FromDecimalString converts the base 10 string
|
||||
// representation of a natural (non-negative) number
|
||||
// into a *big.Int.
|
||||
// Its asymptotic complexity is less than quadratic.
|
||||
func FromDecimalString(s string) *big.Int {
|
||||
var sc scanner
|
||||
z := new(big.Int)
|
||||
sc.scan(z, s)
|
||||
return z
|
||||
}
|
||||
|
||||
type scanner struct {
|
||||
// powers[i] is 10^(2^i * quadraticScanThreshold).
|
||||
powers []*big.Int
|
||||
}
|
||||
|
||||
func (s *scanner) chunkSize(size int) (int, *big.Int) {
|
||||
if size <= quadraticScanThreshold {
|
||||
panic("size < quadraticScanThreshold")
|
||||
}
|
||||
pow := uint(0)
|
||||
for n := size; n > quadraticScanThreshold; n /= 2 {
|
||||
pow++
|
||||
}
|
||||
// threshold * 2^(pow-1) <= size < threshold * 2^pow
|
||||
return quadraticScanThreshold << (pow - 1), s.power(pow - 1)
|
||||
}
|
||||
|
||||
func (s *scanner) power(k uint) *big.Int {
|
||||
for i := len(s.powers); i <= int(k); i++ {
|
||||
z := new(big.Int)
|
||||
if i == 0 {
|
||||
if quadraticScanThreshold%14 != 0 {
|
||||
panic("quadraticScanThreshold % 14 != 0")
|
||||
}
|
||||
z.Exp(big.NewInt(1e14), big.NewInt(quadraticScanThreshold/14), nil)
|
||||
} else {
|
||||
z.Mul(s.powers[i-1], s.powers[i-1])
|
||||
}
|
||||
s.powers = append(s.powers, z)
|
||||
}
|
||||
return s.powers[k]
|
||||
}
|
||||
|
||||
func (s *scanner) scan(z *big.Int, str string) {
|
||||
if len(str) <= quadraticScanThreshold {
|
||||
z.SetString(str, 10)
|
||||
return
|
||||
}
|
||||
sz, pow := s.chunkSize(len(str))
|
||||
// Scan the left half.
|
||||
s.scan(z, str[:len(str)-sz])
|
||||
// FIXME: reuse temporaries.
|
||||
left := Mul(z, pow)
|
||||
// Scan the right half
|
||||
s.scan(z, str[len(str)-sz:])
|
||||
z.Add(z, left)
|
||||
}
|
||||
|
||||
// quadraticScanThreshold is the number of digits
|
||||
// below which big.Int.SetString is more efficient
|
||||
// than subquadratic algorithms.
|
||||
// 1232 digits fit in 4096 bits.
|
||||
const quadraticScanThreshold = 1232
|
Reference in New Issue
Block a user